You are here: Home » News » Basic knowledge of Plant Extracts » Extraction, Isolation and Characterization of Bioactive Compounds from Plants' Extracts
January 10, 2020
2020 Exhibition Schedule--Golden Horizon Biologics
We're highly grateful to your supports to our expanding partnership. Looking forward to a prosperous 2020 with you! Stay tuned!Are you going to show up at events that listed below in 2020? Please drop me a line, and we’ll be extremely happy to meet you there:Natrual Prodcuts Expo West, Mar 3rd-7th,
July 14, 2016
All About Mangosteen: Queen of the Fruits in Asia
If there’s only one tasty, unfamiliar treat to try while traveling in Southeast Asia, it’s mangosteen fruit. With delicate, milky white flesh that practically dissolves in the mouth, mangosteen fruit is appreciated by people throughout Asia.
July 12, 2016
10 ways to boost metabolism naturally
Getting in shape can be difficult – and sometimes just being reminded that diet and exercise is the key to a good body just isn’t enough.

Extraction, Isolation and Characterization of Bioactive Compounds from Plants' Extracts

Views:1     Author:golden horizon biologics     Publish Time: 2019-12-11      Origin:Site

High performance liquid chromatography

High performance liquid chromatography (HPLC) is a versatile, robust, and widely used technique for the isolation of natural products (Cannell, 1998). Currently, this technique is gaining popularity among various analytical techniques as the main choice for fingerprinting study for the quality control of herbal plants (Fan et al., 2006). Natural products are frequently isolated following the evaluation of a relatively crude extract in a biological assay in order to fully characterize the active entity. The biologically active entity is often present only as minor component in the extract and the resolving power of HPLC is ideally suited to the rapid processing of such multicomponent samples on both an analytical and preparative scale. Many bench top HPLC instruments now are modular in design and comprise a solvent delivery pump, a sample introduction device such as an auto-sampler or manual injection valve, an analytical column, a guard column, detector and a recorder or a printer.

medicinal plants

Chemical separations can be accomplished using HPLC by utilizing the fact that certain compounds have different migration rates given a particular column and mobile phase. The extent or degree of separation is mostly determined by the choice of stationary phase and mobile phase. Generally the identification and separation of phytochemicals can be accomplished using isocratic system (using single unchanging mobile phase system). Gradient elution in which the proportion of organic solvent to water is altered with time may be desirable if more than one sample component is being studied and differ from each other significantly in retention under the conditions employed.


Purification of the compound of interest using HPLC is the process of separating or extracting the target compound from other (possibly structurally related) compounds or contaminants. Each compound should have a characteristic peak under certain chromatographic conditions. Depending on what needs to be separated and how closely related the samples are, the chromatographer may choose the conditions, such as the proper mobile phase, flow rate, suitable detectors and columns to get an optimum separation.


Identification of compounds by HPLC is a crucial part of any HPLC assay. In order to identify any compound by HPLC, a detector must first be selected. Once the detector is selected and is set to optimal detection settings, a separation assay must be developed. The parameters of this assay should be such that a clean peak of the known sample is observed from the chromatograph. The identifying peak should have a reasonable retention time and should be well separated from extraneous peaks at the detection levels which the assay will be performed. UV detectors are popular among all the detectors because they offer high sensitivity (Lia et al., 2004) and also because majority of naturally occurring compounds encountered have some UV absorbance at low wavelengths (190–210 nm) (Cannell, 1998). The high sensitivity of UV detection is bonus if a compound of interest is only present in small amounts within the sample. Besides UV, other detection methods are also being employed to detect phytochemicals among which is the diode array detector (DAD) coupled with mass spectrometer (MS) (Tsao and Deng, 2004). Liquid chromatography coupled with mass spectrometry (LC/MS) is also a powerful technique for the analysis of complex botanical extracts (Cai et al., 2002; He, 2000). It provides abundant information for structural elucidation of the compounds when tandem mass spectrometry (MSn) is applied. Therefore, the combination of HPLC and MS facilitates rapid and accurate identification of chemical compounds in medicinal herbs, especially when a pure standard is unavailable (Ye et al., 2007).


The processing of a crude source material to provide a sample suitable for HPLC analysis as well as the choice of solvent for sample reconstitution can have a significant bearing on the overall success of natural product isolation. The source material, e.g., dried powdered plant, will initially need to be treated in such a way as to ensure that the compound of interest is efficiently liberated into solution. In the case of dried plant material, an organic solvent (e.g., methanol, chloroform) may be used as the initial extractant and following a period of maceration, solid material is then removed by decanting off the extract by filteration. The filtrate is then concentrated and injected into HPLC for separation. The usage of guard columns is necessary in the analysis of crude extract. Many natural product materials contain significant level of strongly binding components, such as chlorophyll and other endogenous materials that may in the long term compromise the performance of analytical columns. Therefore, the guard columns will significantly protect the lifespan of the analytical columns.

Non-chromatographic techniques

 

Immunoassay

Immunoassays, which use monoclonal antibodies against drugs and low molecular weight natural bioactive compounds, are becoming important tools in bioactive compound analyses. They show high specificity and sensitivity for receptor binding analyses, enzyme assays and qualitative as well as quantitative analytical techniques. Enzyme-linked immunosorbent essay (ELISA) based on MAbs are in many cases more sensitive than conventional HPLC methods. Monoclonal antibodies can be produced in specialized cells through a technique known as hybridoma technology (Shoyama et al., 2006).


 Plant Extracts


Phytochemical screening assay

Phytochemicals are chemicals derived from plants and the term is often used to describe the large number of secondary metabolic compounds found in plants. Phytochemical screening assay is a simple, quick, and inexpensive procedure that gives the researcher a quick answer to the various types of phytochemicals in a mixture and an important tool in bioactive compound analyses.

 

Fourier-transform infrared spectroscopy (FTIR)

FTIR has proven to be a valuable tool for the characterization and identification of compounds or functional groups (chemical bonds) present in an unknown mixture of plants extract (Eberhardt et al., 2007; Hazra et al., 2007). In addition, FTIR spectra of pure compounds are usually so unique that they are like a molecular “fingerprint”. For most common plant compounds, the spectrum of an unknown compound can be identified by comparison to a library of known compounds. Samples for FTIR can be prepared in a number of ways. For liquid samples, the easiest is to place one drop of sample between two plates of sodium chloride. The drop forms a thin film between the plates. Solid samples can be milled with potassium bromide (KBr) to and then compressed into a thin pellet which can be analyzed. Otherwise, solid samples can be dissolved in a solvent such as methylene chloride, and the solution then placed onto a single salt plate. The solvent is then evaporated off, leaving a thin film of the original material on the plate.


Conclusion

Since bioactive compounds occurring in plant material consist of multi-component mixtures, their separation and determination still creates problems. Practically most of them have to be purified by the combination of several chromatographic techniques and various other purification methods to isolate bioactive compound(s).


  • Dietary Supplements
  • Food & Beverage
  • Animal Feed Additive
  • Flavor&Fragrance

QUICK LINK

CONTACT INFO

 Tel: +86 28-86981346
 E-mail: jessie.z@gh-biologics.com
 Phone: +86 13708068125
 Add: Unit  410, Floor4, Towers 2 Building, Hong Xing Guo Ji, No 69, Qingyun South Road, Jinjiang District, ChengDu, P.R. China, 610021

SUBSCRIBE

Be the first to know about our lastest products.
Copyright © Golden Horizon Technology Co., Ltd.               Terms & Conditions